Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 12 de 12
Фильтр
1.
Small Methods ; 5(5): 2001108, 2021 05 12.
Статья в английский | MEDLINE | ID: covidwho-2286155

Реферат

During the global outbreak of COVID-19 pandemic, "cytokine storm" conditions are regarded as the fatal step resulting in most mortality. Hemoperfusion is widely used to remove cytokines from the blood of severely ill patients to prevent uncontrolled inflammation induced by a cytokine storm. This article discoveres, for the first time, that 2D Ti3C2T x MXene sheet demonstrates an ultrahigh removal capability for typical cytokine interleukin-6. In particular, MXene shows a 13.4 times higher removal efficiency over traditional activated carbon absorbents. Molecular-level investigations reveal that MXene exhibits a strong chemisorption mechanism for immobilizing cytokine interleukin-6 molecules, which is different from activated carbon absorbents. MXene sheet also demonstrates excellent blood compatibility without any deleterious side influence on the composition of human blood. This work can open a new avenue to use MXene sheets as an ultraefficient hemoperfusion absorbent to eliminate the cytokine storm syndrome in treatment of severe COVID-19 patients.


Тема - темы
COVID-19 , Cytokine Release Syndrome , Charcoal , Cytokines , Humans , Interleukin-6 , Pandemics , SARS-CoV-2 , Titanium
2.
Cancer Commun (Lond) ; 2022 Nov 08.
Статья в английский | MEDLINE | ID: covidwho-2288457

Реферат

BACKGROUND: Neutrophil extracellular traps (NETs) are considered significant contributors to cancer progression, especially metastasis. However, it is still unclear whether NETs are involved in hepatitis B virus (HBV)-related hepatocarcinogenesis and have potential clinical significance during evaluation and management for hepatocellular carcinoma (HCC). In this study, we aimed to investigate the functional mechanism of NETs in HBV-related hepatocarcinogenesis and their clinical significance. METHODS: A total of 175 HCC patients with and without HBV infection and 58 healthy controls were enrolled in this study. NETs were measured in tissue specimens, freshly isolated neutrophils and blood serum from these patients, and the correlation of circulating serum NETs levels with malignancy was evaluated. The mechanism by which HBV modulates NETs formation was explored using cell-based studies. In addition, in vitro and in vivo experiments were further performed to clarify the functional mechanism of NETs on the growth and metastasis of HCC. RESULTS: We observed an elevated level of NETs in blood serum and tissue specimens from HCC patients, especially those infected with HBV. NETs facilitated the growth and metastasis of HCC both in vitro and in vivo, which were mainly dominated by increased angiogenesis, epithelial-mesenchymal transition (EMT)-related cell migration, matrix metalloproteinases (MMPs)-induced extracellular matrix (ECM) degradation and NETs-mediated cell trapping. Inhibition of NETs generation by DNase 1 effectively abrogated the NETs-aroused HCC growth and metastasis. In addition, HBV-induced S100A9 accelerated the generation of NETs, which was mediated by activation of toll-like receptor (TLR4)/receptor for advanced glycation end products (RAGE)-reactive oxygen species (ROS) signaling. Further, circulatory NETs were found to correlate with viral load, TNM stage and metastasis status in HBV-related HCC, and the identified NETs could predict extrahepatic metastasis, with an area under the ROC curve (AUC) of 0.83 and 90.3% sensitivity and 62.8% specificity at a cutoff value of 0.32. CONCLUSIONS: Our findings indicated that activation of RAGE/TLR4-ROS signaling by HBV-induced S100A9 resulted in abundant NETs formation, which subsequently facilitated the growth and metastasis of HCC cells. More importantly, the identified circulatory NETs exhibited potential as an alternative biomarker for predicting extrahepatic metastasis in HBV-related HCC.

3.
Sci China Life Sci ; 2022 Nov 24.
Статья в английский | MEDLINE | ID: covidwho-2269192

Реферат

Antibody therapeutics and vaccines for coronavirus disease 2019 (COVID-19) have been approved in many countries, with most being developed based on the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 has an exceptional ability to mutate under the pressure of host immunity, especially the immune-dominant spike protein of the virus, which is the target of both antibody drugs and vaccines. Given the continuous evolution of the virus and the identification of critical mutation sites, the World Health Organization (WHO) has named 5 variants of concern (VOCs): 4 are previously circulating VOCs, and 1 is currently circulating (Omicron). Due to multiple mutations in the spike protein, the recently emerged Omicron and descendent lineages have been shown to have the strongest ability to evade the neutralizing antibody (NAb) effects of current antibody drugs and vaccines. The development and characterization of broadly neutralizing antibodies (bNAbs) will provide broad strategies for the control of the sophisticated virus SARS-CoV-2. In this review, we describe how the virus evolves to escape NAbs and the potential neutralization mechanisms that associated with bNAbs. We also summarize progress in the development of bNAbs against SARS-CoV-2, human coronaviruses (CoVs) and other emerging pathogens and highlight their scientific and clinical significance.

5.
6.
Nat Microbiol ; 7(7): 1063-1074, 2022 07.
Статья в английский | MEDLINE | ID: covidwho-1908191

Реферат

Frequent outbreaks of coronaviruses underscore the need for antivirals and vaccines that can counter a broad range of coronavirus types. We isolated a human antibody named 76E1 from a COVID-19 convalescent patient, and report that it has broad-range neutralizing activity against multiple α- and ß-coronaviruses, including the SARS-CoV-2 variants. 76E1 also binds its epitope in peptides from γ- and δ-coronaviruses. 76E1 cross-protects against SARS-CoV-2 and HCoV-OC43 infection in both prophylactic and therapeutic murine animal models. Structural and functional studies revealed that 76E1 targets a unique epitope within the spike protein that comprises the highly conserved S2' site and the fusion peptide. The epitope that 76E1 binds is partially buried in the structure of the SARS-CoV-2 spike trimer in the prefusion state, but is exposed when the spike protein binds to ACE2. This observation suggests that 76E1 binds to the epitope at an intermediate state of the spike trimer during the transition from the prefusion to the postfusion state, thereby blocking membrane fusion and viral entry. We hope that the identification of this crucial epitope, which can be recognized by 76E1, will guide epitope-based design of next-generation pan-coronavirus vaccines and antivirals.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , Epitopes , Humans , Immunoglobulins , Mice , Spike Glycoprotein, Coronavirus/metabolism
7.
Genome Med ; 13(1): 164, 2021 10 14.
Статья в английский | MEDLINE | ID: covidwho-1542128

Реферат

BACKGROUND: The receptor-binding domain (RBD) variants of SARS-CoV-2 could impair antibody-mediated neutralization of the virus by host immunity; thus, prospective surveillance of antibody escape mutants and understanding the evolution of RBD are urgently needed. METHODS: Using the single B cell cloning technology, we isolated and characterized 93 RBD-specific antibodies from the memory B cells of four COVID-19 convalescent individuals in the early stage of the pandemic. Then, global RBD alanine scanning with a panel of 19 selected neutralizing antibodies (NAbs), including several broadly reactive NAbs, was performed. Furthermore, we assessed the impact of single natural mutation or co-mutations of concern at key positions of RBD on the neutralization escape and ACE2 binding function by recombinant proteins and pseudoviruses. RESULTS: Thirty-three amino acid positions within four independent antigenic sites (1 to 4) of RBD were identified as valuable indicators of antigenic changes in the RBD. The comprehensive escape mutation map not only confirms the widely circulating strains carrying important immune escape RBD mutations such as K417N, E484K, and L452R, but also facilitates the discovery of new immune escape-enabling mutations such as F486L, N450K, F490S, and R346S. Of note, these escape mutations could not affect the ACE2 binding affinity of RBD, among which L452R even enhanced binding. Furthermore, we showed that RBD co-mutations K417N, E484K, and N501Y present in B.1.351 appear more resistant to NAbs and human convalescent plasma from the early stage of the pandemic, possibly due to an additive effect. Conversely, double mutations E484Q and L452R present in B.1.617.1 variant show partial antibody evasion with no evidence for an additive effect. CONCLUSIONS: Our study provides a global view of the determinants for neutralizing antibody recognition, antigenic conservation, and RBD conformation. The in-depth escape maps may have value for prospective surveillance of SARS-CoV-2 immune escape variants. Special attention should be paid to the accumulation of co-mutations at distinct major antigenic sites. Finally, the new broadly reactive NAbs described here represent new potential opportunities for the prevention and treatment of COVID-19.


Тема - темы
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Immune Evasion , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adult , Aged , B-Lymphocytes/immunology , COVID-19/genetics , COVID-19/immunology , Female , Humans , Immunologic Memory , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
Nephrol Dial Transplant ; 35(12): 2095-2102, 2020 12 04.
Статья в английский | MEDLINE | ID: covidwho-1059698

Реферат

BACKGROUND: Acute kidney injury (AKI) is an important complication of coronavirus disease 2019 (COVID-19), which could be caused by both systematic responses from multi-organ dysfunction and direct virus infection. While advanced evidence is needed regarding its clinical features and mechanisms. We aimed to describe two phenotypes of AKI as well as their risk factors and the association with mortality. METHODS: Consecutive hospitalized patients with COVID-19 in tertiary hospitals in Wuhan, China from 1 January 2020 to 23 March 2020 were included. Patients with AKI were classified as AKI-early and AKI-late according to the sequence of organ dysfunction (kidney as the first dysfunctional organ or not). Demographic and clinical features were compared between two AKI groups. Their risk factors and the associations with in-hospital mortality were analyzed. RESULTS: A total of 4020 cases with laboratory-confirmed COVID-19 were included and 285 (7.09%) of them were identified as AKI. Compared with patients with AKI-early, patients with AKI-late had significantly higher levels of systemic inflammatory markers. Both AKIs were associated with an increased risk of in-hospital mortality, with similar fully adjusted hazard ratios of 2.46 [95% confidence interval (CI) 1.35-4.49] for AKI-early and 3.09 (95% CI 2.17-4.40) for AKI-late. Only hypertension was independently associated with the risk of AKI-early. While age, history of chronic kidney disease and the levels of inflammatory biomarkers were associated with the risk of AKI-late. CONCLUSIONS: AKI among patients with COVID-19 has two clinical phenotypes, which could be due to different mechanisms. Considering the increased risk for mortality for both phenotypes, monitoring for AKI should be emphasized during COVID-19.


Тема - темы
Acute Kidney Injury/etiology , COVID-19/complications , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , COVID-19/epidemiology , China/epidemiology , Female , Follow-Up Studies , Hospital Mortality/trends , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2 , Time Factors , Young Adult
9.
Cell Death Dis ; 12(1): 53, 2021 01 07.
Статья в английский | MEDLINE | ID: covidwho-1015001

Реферат

Interleukin-38 has recently been shown to have anti-inflammatory properties in lung inflammatory diseases. However, the effects of IL-38 in viral pneumonia remains unknown. In the present study, we demonstrate that circulating IL-38 concentrations together with IL-36α increased significantly in influenza and COVID-19 patients, and the level of IL-38 and IL-36α correlated negatively and positively with disease severity and inflammation, respectively. In the co-cultured human respiratory epithelial cells with macrophages to mimic lung microenvironment in vitro, IL-38 was able to alleviate inflammatory responses by inhibiting poly(I:C)-induced overproduction of pro-inflammatory cytokines and chemokines through intracellular STAT1, STAT3, p38 MAPK, ERK1/2, MEK, and NF-κB signaling pathways. Intriguingly, transcriptomic profiling revealed that IL-38 targeted genes were associated with the host innate immune response to virus. We also found that IL-38 counteracts the biological processes induced by IL-36α in the co-culture. Furthermore, the administration of recombinant IL-38 could mitigate poly I:C-induced lung injury, with reduced early accumulation of neutrophils and macrophages in bronchoalveolar lavage fluid, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines and permeability of the alveolar-epithelial barrier. Taken together, our study indicates that IL-38 plays a crucial role in protection from exaggerated pulmonary inflammation during poly(I:C)-induced pneumonia, thereby providing the basis of a novel therapeutic target for respiratory viral infections.


Тема - темы
COVID-19/metabolism , Immunity, Innate/drug effects , Influenza, Human/metabolism , Interleukins/pharmacology , Pneumonia/prevention & control , Poly I-C/toxicity , Respiratory System/immunology , Animals , COVID-19/immunology , COVID-19/virology , Cytokines/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Influenza A virus/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Interleukin-1/blood , Interleukins/blood , Male , Mice , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/pathology , Respiratory System/metabolism , Respiratory System/pathology , SARS-CoV-2/isolation & purification
Критерии поиска